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Gravitational Quadrupole Radiation of Angular 
Momentum 
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We obtain the quadrupole angular momentum radiation of gravity from the 
recently obtained covariant conservation law of angular momentum. Our result 
agrees with that derived from the Landau-Lifshitz energy-momentum 
pseudotensor. 

1. INTRODUCTION 

Conservation laws of energy-momentum and angular momentum have 
been of fundamental interest in gravitational physics (Penrose, 1982). Using 
the vierbein representation of general relativity, Duan and Zhang (1963) 
obtained a general covariant conservation law of energy-momentum which 
overcomes the difficulties of other expressions (Duan et aL, 1988). This 
conservation law gives the correct quadrupole radiation formula of energy 
(Duan and Wang, 1983), which is in good agreement with the analysis of 
the gravitational damping for the pulsar PSR1916+ 13. On the other hand, the 
conservation law of angular momentum has also been discussed in different 
approaches. Landau and Lifshitz (1987) and Fock (1959) established their 
angular momentum conservation laws from symmetric pseudotensors, which 
are therefore noncovariant. In another approach, Komar (1959) suggested 
some integrals, and following this, Ashtekar and Winicour (1982) introduced 
some linkages, but these definitions involve some ambiguities (Penrose, 
1982). Recently,-Duan and Feng (n.d.; Feng and Duan, n.d.) proposed a 
covariant conservation law of angular momentum which does not suffer 
from the difficulties of the others. The corresponding conservative angular 

Ilnstitute of Nuclear Research, Academia Sinica, Shanghai, 201800, China. E-mail: 
hqsong @ fudan.ihep.ac.cn. 

267 
0020-7748/96/0200-0267509.50/0 �9 1996 Plenum Publishing Corporation 



268 Fengand Zong 

momentum for some specific spacetimes shows that this conservation law 
is reasonable. 

In this paper, we derive the gravitational radiation of angular momentum 
from the general covariant conservation law (Duan and Feng, n.d.; Feng and 
Duan, n.d.). As expected, the radiation is related to that of energy and depends 
on the quadrupole. In Section 2, we briefly review the general covariant 
conservation law of angular momentum. In Section 3, we derive the radiation 
from the weak-field approximation and make a few remarks. 

2. GENERAL COVARIANT ANGULAR M O M E N T U M  
CONSERVATION LAW 

corresponds to the invariance of the 
the general covariant conservation 
relativity may be obtained by means 
ture proves to be reasonable (Duan 

In general relativity, the total 
expressed as (Landau and Lifshitz, 

1= fM,~. d4x : IM (,~C~g "k ,~m) d4x 

c4 4rZ-gg- ' ~ ( F ~ F ~  ~ - F~ ,F~)  
~ g -  16"rrG 

In deriving the general covariant conservation law of energy-momentum 
in general relativity (Duan and Zhang, 1963) the general displacement trans- 
formation, which is a generalization of the displacement transformation in 
Minkowski spacetime, was used. In the local Lorentz reference frame, the 
general displacement transformation takes the same form as that in Minkowski 
spacetime. This implies that general covariant conservation laws correspond 
to the invariance of the action under local transformations. We may conjecture 
that since the conservation law for angular momentum in special relativity 

action under the Lorentz transformation, 
law of angular momentum is general 

of local Lorentz invariance. This conjec- 
and Feng, n.d.; Feng and Duan, n.d.). 
action of the gravity-matter system is 
1987) 

(1) 

(2) 

where F~,~ are the Christoffel symbols, 5s is the matter part of the Lagrangian, 
and G is the Newtonian gravitational constant. We use the vierbein description; 
our notations are as follows: ~ are the vierbein components and e~ their 
inverses, g~.v a O = = "q~be,~e~, "q~b (1, -- 1, -- 1, -- 1), r are the spin connections 
which are defined by 

a ~ e ~  = O.e~ - tO~be~ - F~ex = 0 (3) 

and toaoc = e~o~#c and t% = ~qbCtOb~c. It Can be proved that 
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c 4 
= - e exD,,eaD,,eb) (4) ~g 16~G e(D~e~D~ea~ a~ b k cr 

C 4 

~s = ~w 16"rr----G A (5) 

c 4 
~ ,  = - -  (o~aoa ~ - t%b~tO cb~) (6) 

16~rG 

A = O~(ee~'O~e~ - ee~a~e ~ )  (7) 

where 

D~e~ =-- O~e~ - tomb e~b 

e = ~ (8) 

and A is a divergence term. 
The local vierbein Lorentz transformation takes the form 

e~(x) ---> eL" = Aab(x)e~(x) 

Tlab A ac( x ) A bd ( X ) = "lqc d (9) 

It is required that ~s is invariant under (9), and ~g is invariant obviously. 
So under the transformation (9), ~ is invariant, i.e., 

[,,~],~e~ + [,~]~,a~d~ A + ~a--~e~ Ge~ + ~ Gdp A = 0 (10) 

where [~]e~ and [~],~A are the Euler expressions defined as 

[~]'~ = 0e--~ - 0~ 00~ea~ (11) 

O~ 0 ~  
[~],~A = 0dp a 0~ 00~dpA (12) 

Using the Einstein equation 

[~ ] , a  ~ = 0 

i.e., 

[~e~],a~ + [~em],~ = 0 

and the equation of motion of matter 

[~]~A = 0 (13) 
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we get the following by (10): 

[ a~m a,~,,, ) 
O o ( ~  ,] + ~ . = 0  (14) ar ~ ~eg + ~A 

where we have used the fact that only ~m contains the matter field qba (A = 
1 . . . . .  N). Consider the infinitesimal local Lorentz transformation 

A%(x) = a% + a%(x) 

et.b = -eta.  (15) 

and from (9). we have 

~e~a (X) -= Otab(X)eta'(x) (16) 

Suppose that ~m takes the form 

~;~m : "~m(e~a, r Dr (17) 

The +a belong to some representation of the Lorentz group with generators 
l~b (a, b = 0, 1, 2, 3), lab = --Iba, and Dr is the covariant derivative 

1 
D ~ d~ a = c3 ~ dp a - -~ OJttab( l ab)aBd~n (18) 

Then under the transformation (9), ~b a transforms as 

qba(x) ---) ~b'a(x) = [D(ot)]an+e(x) (19) 

D(ct) can be linearized near the identity when the Ota0 are infinitesimal, 

1 
[D(ct)]an = aan + ~ (laDance~(X) (20) 

ThUS under the transformation (9), ~b a varies as 

1 ~f~A(x) = "~ (lab)AB+B(x)otab(x) (21) 

We introduce J~, such that 

= _3 [ 0 ~  0,~ m e~otab eJ ,~x  '~b . e~,oL ab + - -  
c LOOse  a" ao ,e a" 

O[;t~m 1 (lab)ABo&bdpS"]j (22) 

Then (14) can be written as 
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O ~ ( e J  ~ba ab) 
3c3 O ( aA ) 

16'rrG ~kOO.e~ ae~ = 0 
(23) 

From (7) one can get 

OA lm Ixk emO'Otlra = Ot Oo.(eVlm ) (24) 

where 

Vl~  = e~eXm - eme,~ x 

Substituting (24) into (23), we obtain 

3c 3 ab vo. 
O~(eJ'~etab) 16arG 0~[a O~(eV~b)] = 0 

(25) 

(26) 

i.e.~ 

3c3 v~ otab 
O~(eJ,~)a ab + eJ,~ 16"rrG O~(eV,b)]0~ = 0 (27) 

Since aab and 0~et "b are independent of each other, we must have 

O~(eJ~,) = 0 (28) 

J~b -- 3c3 VxV,~ (29) 
16"rrG 

or  

3c 3 
J , ~ -  

16'rrG 
- -  (o~ae~ + OJabCec ~ - tobeg - ~baCe~c) (30) 

Since V,~ is an antisymmetric tensor with respect to the indices Ix and v, 
this means that J~b is conserved identically. As usual, we call the V~ superpo- 
tentials. Since the current J~b is derived from the local Lorentz invafiance 
of the total Lagrangian, it can be interpreted as the angular-momentum tensor 
density of the gravity-matter system. From (25) and (29) we see that the 
current J,~ of the gravity-matter system is only determined by the vierbein; 
this feature is quite similar to the theory of the conservation law of energy- 
momentum in general relativity (Duan and Zhang, 1963). This is because 
the information of the state of motion of the whole gravity-matter system 
is contained in the vierbein through the Einstein equations. 

For a globally hyperbolic Riemann manifold M, there exist Cauchy 
surfaces ~, foliating M. We choose a submanifold D of M joining any two 
Cauchy surfaces Eli and ~t2 so the boundary OD of D consists of three parts 
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Zt~, Zt2, and A, which is at spatial infinity. For an isolated system, the space- 
time should be asymptotically flat at spatial infinity, so the vierbein has the 
following asymptotic behavior: 

lim(a~ea~ - a~,eap.) = 0 (31) 
r----)~ 

We can obtain the conservative angular momentum Jab and its radiation 

Jab = IS J~bedZ~ (32) 
t 

Ot Jab(~) = --C J~bedsi (33) 
o" 

where edZ~ is the covariant surface element of Cauchy surface ~t, and dZ~ 
= 1/3! e~,~dx~Adx~Adx ~. It can also be shown that Jab is gauge covariant. 

3. QUADRUPOLE RADIATION OF ANGULAR MOMENTUM 

As in the derivation of the gravitational radiation of  energy, we consider 
the weak field at large distance from the source bodies. The familiar expansion 
of the metric is of  the form g ~  = -q~ + h~ ,  Ih~l  < <  1. To first order in 
h~,~, the Einstein equations are 

16-rrG 
I-]dp~v = c4 T~.,, (34) 

with coordinate condition 

0~d~ = 0 (35) 

where ~b~ = h ~  - �89 ) ,  h = h~. The solution to (34) is of  the retarded 
potential form 

~b~v(r, t) - 4G f T~v(r', t - I r - r ' l / c )  
c 4 I r -- r '[  d3r'  (36) 

For large r = I t  I, we have approximately 

c4 r T~  r', t - d3r ' (37) 

The space components d~ij (the indices i, j ,  k . . . .  run over 1, 2, 3) can be 
further expressed as 
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~bu( r , t ) -  2GO 2 I  
C4 r Ot 2 pX[Xj d3r  ' (38) 

For later use, we now derive some useful relations of the derivatives of 
dp~. To first order in 1/r, i.e., first order in hr we have 

0 , ~  = 1 d ~ n i ,  ni = x"_ (39) 
C r 

where the dot stands for time derivative. From the coordinate condition (35) 
we have 

aO~bo~ = _aidpz~ ' = 1 ~bi~ni (40) 
C 

Equations (39) and (40) together give that 

oOd#oo = _ 1  d~ioni (41) 
c 

Thus we have 

C90r = ! $i jnirt j ,  oif~o0 : ! SjknJnkni  
c c 

a, ,oj = ' a~176 = -cl (42) 

All these relations hold to first order. 
The expansion of the vierbein is taken to be 

ear = "qag. -b ~f~, e~ -~ ~a - fa Ix (43) 

The relation between hr and f ~  can be easily obtained, 

1 
h ~  = ~ ( f~  + f ~ )  (44) 

The first order of ~he vierbein gauge condition V~to%b = 0 ensures that 

f ~  = f ~  (45) 

Using the relations 
P, v o~oc - o~O~c = ebea(O~e~c - O~e~c) (46) 

bcP. v o~ = - x l  eoe~(O~e~c - O~e~) (47) 
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we can directly calculate that to second order, 

l{ 
tOabg -- (Oba w = -~ Obha v" -- Oahb v" -- ~ [h[3a(Obhf jg - cg~hb ~) 

h'~b(O,~h,, ~ - Ooh,~ ~) + h~(Obho~ - O,,hbc)]) (48) + 

1 ( 1 [ha(Odh _ oae~ = ~ ~ Oah - OChac - OChd~) 

}1 
+ haC(Oahdc - Oaha~)] - -~ h~(Oah - cg~h c) (49) 

Since the radiation should be proportional to G, it is evident from the 
expression (30) that only the second-order part of J ~  contributes to the 
radiation because it contains G 2, while the first-order part contains G, which 
will be canceled by the G in the overall constant factor. Practical evaluation 
can prove this point. Hence we need only the second-order part of Jib ,  which 
we call i . Kab. 

3G3 ( c i 1 c i 1 
K~b -64~r----G ,l,.(a~+c - a~,l,~,) + ~ ,l, oabac,l, + ~ ,1,ao,l,~ 

i c i d c l } 
- -  (l)cObf~a + ~bf~c(Oa+d - -  Oa~)  - ~ doiooadp - (a ~ b) (50) 

Using the relations (42), we obtain 

3c2 { I ", 
= ~--~-~G dPJ(dptnk -- +~nt)n' + ~?~ -- +~)n, 

1 1 
+ ~ +lnk(+pqnPnqn , + f~~ + ~ dp+~inj 

+ nktd:~ + dojtn') + d:to(-dpo, nPnj + +jt,nPnt) 

+ + ~  - +~) + , t ,q(~, , ,  - ~ n ~ ) l  

1 . . ] 
- ~ dp'kni(d:t, qnPnqn j + ~ n : )  - ( j  ~ k) (51) 

. I  

Making use of the integrals 
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we have 

11 1 ninj dl-I = - 3  "qlj (52) 

nyntntn m dO = (11jk'~lra + "qjt'qkm + rnjmTIkt) (53) 

d _ 2 G  (Dt  ff)t,, _ D~Otm) (54) 
dt J ' ~  45c 3 

where D;j is the usual quadrupole moment  

Dij = [ p(3x;xj - "qijxPxp) d3x 
3 

d 1 r d 2G et,~.DpDp n 
M t =  2 ~ J " ~  = 4 - ~  

or (55) 

(56) 

This is exactly what is given in Landau and Lifshitz (1987). 
Finally, we remark that general covariance is a fundamental demand in 

general relativity, and the covariant conservation law (Duan and Feng, n.d.; 
Feng and Duan, n.d.), the reasonableness of  which has been further shown 
by this paper, is much more reliable than laws which are not covariant (Landau 
and Lifshitz, 1987). 
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